GBAS safety assessment guidance related to anomalous ionospheric conditions
ثبت نشده
چکیده
منابع مشابه
TargetedParameter InflationWithinGround-BasedAugmentation Systems to Minimize Anomalous Ionospheric Impact
Anomalous ionospheric conditions can cause large variations in propagation delays of transionospheric radio waves, such as global navigation satellite system (GNSS) signals. Although very rare, extremely large spatial variations pose potential threats to ground-based augmentation system (GBAS) users. Because GBAS provide safety-of-life services, namely precision approach and landing aircraft gu...
متن کاملAssessment of Ionospheric Gradient Impacts on Ground-Based Augmentation System (GBAS) Data in Guangdong Province, China
Ionospheric delay is one of the largest and most variable sources of error for Ground-Based Augmentation System (GBAS) users because inospheric activity is unpredictable. Under normal conditions, GBAS eliminates ionospheric delays, but during extreme ionospheric storms, GBAS users and GBAS ground facilities may experience different ionospheric delays, leading to considerable differential errors...
متن کاملResults from Automated Ionospheric Data Analysis for Ground-Based Augmentation Systems (GBAS)
Extremely large ionospheric spatial gradients could cause potential integrity threats to Ground-Based Augmentation System (GBAS) users. The importance of understanding ionosphere behavior is not limited to cases of extreme ionospheric events. Broader knowledge of both nominal and anomalous ionospheric behavior would help improve the design and operation of GBAS. We developed an automated tool f...
متن کاملEnhancements of Long Term Ionospheric Anomaly Monitoring for the Ground-Based Augmentation System
Extremely large ionospheric gradients can pose a potential integrity threat to the users of ground-based augmentation systems (GBAS). A better understanding of the ionospheric behavior (not limited to that during extreme ionospheric activity) is important in the design and operation of GBAS to meet its integrity and availability requirements. A tool for long-term ionosphere monitoring was devel...
متن کاملCarrier Phase Ionospheric Gradient Ground Monitor for GBAS with Experimental Validation
This paper describes a Ground Based Augmentation System (GBAS) ground-based monitor capable of instantly detecting anomalous ionospheric gradients at the time of satellite acquisition. The monitor utilizes differential carrier phase measurements across multiple reference station baselines as the basis for detection. Performance analysis shows that the monitor is highly sensitive to the quality ...
متن کامل